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Understanding water movement in the vadose zone is critical for accurate climate and crop modeling, precision
agriculture, soil–atmosphere gas exchanges, and contamination mitigation. A major reason for the difficulty of
performing effective hydraulic measurements is because they are scale dependent due to the inherent heteroge-
neity of the soil. A better understanding of the spatial variability and underlying processes responsible for this
variability could lead to a more accuratemodeling. The goal of this study is to investigate the scale dependencies
of soil hydraulic properties. Factorial kriging analysis (FKA) is a geostatistical technique which identifies scale
dependent spatial relationships and common sources of variability. FKA was applied on a number of soil proper-
ties acquired from samples collected at 4 depths ranging from 8 to 68 cm in a 20.8 ha field in the Po River delta.
The farmland is characterized by the presence of paleo-channel structures and highly heterogeneous soil.
Texture, bulk density, Ks (saturated hydraulic conductivity), and the van Genuchten–Mualem parameters α
(inverse of air entry), n (shape parameter), θr (residual water content), and θs (saturated water content) were
included in the analysis. Two nested spherical models with ranges around 105 m and 235 m plus nugget fit
the experimental variograms and cross-variograms best. Regionalized correlation coefficients and regionalized
PCA revealed many strong, scale dependent relationships which were not obvious from descriptive statistics,
such as the effect of interaction between texture and bulk density on n and Ks, and the stronger influence of
bulk density than texture on Ks. The first principal components (PCs) of the regionalized PCA explained the
majority of the variability and the second PCs were rarely informative. The spatial distributions of the first PCs
resembled bulk density at short scale and the paleo-channels and texture at long scale. The decoupling of bulk
density and texture is likely caused by differences in soil structure. The influence of the short scale PCs is greater
than the long scale PCs near the surface but becomes less important as depth increases. This suggests that depth
plays an important role and should be considered more often in spatial analysis.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The vadose zone is of utmost importance in solving some of today's
most challenging environmental issues. In particular, this zone is an
integral part of the hydrological cycle and the interface between
groundwater, vegetation, and atmospheric interactions. Water move-
ment in the vadose zone differs greatly from water movement in
other systems. Though much research on the complex interactions of
ical conductivity; FKA, factorial
ty and tortuosity parameter; n,
tation Index; PCA, principal
C, soil organic carbon; UHC,
tention curve; α, inverse of air
nt.
soil and water movement has been completed, there is much progress
to bemade (Vereecken et al., 2010). Unsaturatedwater retention curves
(WRCs) and hydraulic conductivity curves (UHCs) are most often
described by the van Genuchten (1980) and Mualem (1976). Several
studies have concluded that lab measurements differ from field
measurements of the hydraulic parameters of the WRC and UHC
(Wierenga et al., 1991; Mallants et al., 1997b). Spatial heterogeneity
is suggested as the primary source of error. In particular, Mallants
et al. (1997b) showed this to be true for measurements of saturated
hydraulic conductivity (Ks). The variance of the Ks measurements
decreases as sample volume increases, likely due to the existence
of macropores and preferential flow paths. These local variations in
soil structure initiate a predominant short-range autocorrelation of
Ks. In addition, deterministic components related with pedogenetic
processes (e.g. topography) affect Ks at larger scale of investigations
(Zimmermann et al., 2013).
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Several studies have evaluated short scale variability (b25 m) of
hydraulic parameters (Ciollaro and Romano, 1995; Mallants et al.,
1997a; Hammel et al., 1999; Russo and Jury, 1987; Deurer and
Duijnisveld, 2000), while most larger scale studies have focused on
water content (θ) instead of hydraulic parameters (Botros et al., 2009;
Bocchi et al., 2000; Goulard and Voltz, 1992; Voltz and Goulard, 1994).
Spatial cross-correlation of hydraulic parameters has been investigated
at short scale (Ünlü et al., 1990; Vauclin et al., 1994; Mallants et al.,
1996; Mertens et al., 2002; Greminger et al., 1985). Using standard
geostatistical interpolation methods (i.e. ordinary kriging and indicator
kriging), Saito et al. (2009) compared the performances of two interpo-
lation approaches to estimate the spatial distribution of UHC parame-
ters of a 25 × 6 m domain and found that usually spatial correlation
was b5 m. Moreover the existence of soil horizons resulted in a poor
spatial correlation of parameters in the vertical direction.

Few studies have evaluated large scale spatial variability of hydraulic
parameters.

Development of pedotransfer functions (PTFs) to predict hydraulic
parameters from soil properties is an active area of research. These
studies often incorporate advanced multivariate statistical techniques
to build their prediction models. Inclusion of new and different explan-
atory variables is an active thrust in the field (Vereecken et al., 2010).
Doussan and Ruy (2009) used apparent soil electrical conductivity
(ECa) to predict UHC. Moreover, electrical surveys can also hold
tremendous information about the spatial variability of soil (Corwin
and Lesch, 2005).

On a 28.6 ha hill catchment, Herbst et al. (2006) applied
coregionalization geostatistical methods (e.g. regression kriging
model) using geomorphometric attributes (e.g. terrain slope and eleva-
tion) as co-variables. Strong effects of soil heterogeneity with depth on
UHC parameters have been revealed by the authors.

The major drawback to measuring unsaturated hydraulic parame-
ters is the time and cost involved and ideally would be reserved for
cases when accuracy takes priority, e.g. shrink-swell studies. PTFs are
best applied when accuracy can be sacrificed in exchange for sample
quantity, e.g. when studying water movement of a field or catchment.
A PTF that is valid for a large area is unlikely to model small scale
phenomena well because of the difficulty in measuring many samples
results in low sample density (Vereecken et al., 2010). Applications of
downscaling to these widely applicable PTFs could benefit from knowl-
edge of the spatial structure of the variables involved. Regardless of the
PTFs use, development of PTFs could benefit from a deeper understand-
ing of causal processes and new insight into relationships between soil
variables and hydraulic parameters.

Factorial kriging analysis (FKA) is a geostatistical technique which
dissects relationships based on scale dependencies (Groovaerts, 1998).
At each scale, relationships are examined independent of the variability
from relationships of other scales and common sources of variance in
the spatial distributions identified. Sollitto et al. (2010) and Nanos and
Martín (2012) were able to distinguish anthropogenic from natural
sources of variation in trace elements typically associated with pollu-
tion. Dobermann et al. (1995) used FKA to investigate the relationships
between soil chemistry, leaching, and hillslope position. Bocchi et al.
(2000) applied FKA to soil properties and water content at several
potentials. They explored the relationships between soil properties
and water retention at different potentials and identified the effects of
manure spreading on water retention. To the authors' knowledge,
Biswas and Si (2009) is the only published use of FKA in conjunction
with hydraulic parameters and soil properties. They studied a 384 m
1D transect in an area characterized by glacio-fluvial and fluvial lacus-
trine derived sandy loams. While they did explore novel relationships
between hydraulic parameters, texture, bulk density and SOC, they
were not able to investigate effects at scales larger than 200 m or iden-
tify an underlying process for the spatial distributions. Thus, relation-
ships between soil properties and hydraulic parameters at larger
scales remain uninvestigated and little scientific literature is available
describing efforts to understand the underlying processes responsible
for the patterns of variability seen in soil and hydraulic parameters.

This study will apply FKA to a field with a highly heterogeneous
geomorphology at the southern margin of the Venice Lagoon, Italy, to
investigate the scale dependencies of relationships between soil proper-
ties and hydraulic properties.

We hypothesized that 1) soil properties and hydraulic properties
were affected by the same underlying processes and 2) that the rela-
tionships between soil properties and hydraulic properties are depen-
dent on scale. The specific objectives of this study are to explore field
scale spatial relationships between hydraulic parameters and soil phys-
ical properties and identify underlying processes responsible for spatial
distributions found in the study. After a short description of the study
area from hydrologic and geomorphologic points of view, the collected
datasets and the geostatistical techniques used for their processing are
described. Then, the results are presented highlighting the depth-
dependent behavior of the spatial relationships between the soil
physical and hydraulic properties with primary and secondary vari-
ables. A discussion session and conclusions close the paper.

2. Material and methods

2.1. Study site description

The study site is a 20.8 hafield located on the southernmargin of the
Venice Lagoon (Fig. 1). This area was reclaimed from the lagoon by the
construction of levees between 1892 and 1967 (Gambolati et al., 2006).
A pumping station and a dense network of ditches control the depth to
the water table, which is generally maintained at ca. 0.6 m during the
summer season in order to promote sub-irrigation. On the northern
edge are the Morto Canal, Bacchiglione River, Brenta River, and the
Venice Lagoon. All of the canals and the majority of the river courses
are not natural as the rivers were diverted here at various times in the
past. During construction of the Morto Canal, soil was placed on the
northern edge of the field burying the original surface. Because of its
reclaimed origin, soil shows a high variability in terms of texture, pH,
salinity, and presence of organic horizons, which can be superficial as
well as buried at deeper depth. Two main soil typologies can be identi-
fied according to USDA (1998). In the northern part, along the Morto
Canal, soils are Fluvaquentic Endoaquepts fine-silty, mixed, calcareous,
mesic, and in the southern part Typic Sulfisaprists euic, mesic. Further-
more, there are well preserved sandy paleo-river channels which cut
through the field. These artifacts are related to the geomorphological
evolution of this coastal area during the Holocene. In recent years, the
field has been continuously used to grow corn (Zea mais L.) and is
plowed to a depth of approximately 0.30 m.

2.2. Soil sampling and primary variables

A set of 123 sampling locationswere selected in the study area using
an apparent electrical conductivity (ECa) survey and simulated anneal-
ing algorithm to account for the maximum amount of variability in the
fieldwhilemaintaining spatial coverage. Further details are described in
Scudiero et al. (2011). Undisturbed samples were taken at 50 out of the
123 locations in October 2010 using a hydraulic core sampler. At each
undisturbed location, core samples (7.2 cm diameter, 6 cm height)
were removed at four depths: 0.05–0.11 m, 0.25–0.31 m, 0.45–0.51 m,
and 0.65–0.71 m, referred to nominally according to their midpoint
depth: 8 cm, 28 cm, 48 cm and 68 cm. These depths were chosen to
provide even coverage of the approximately 1 m vadose zone.

Hydraulic measurements were made on 164 undisturbed cores.
Although a higher number of tests should be preferable from a
geostatistical point of view, the complexity of the testing procedure
makes this number significant for spatial analyses of unsaturated
hydraulic properties. Saturated hydraulic conductivity (Ks) was
measured using a laboratory permeameter with ascendant water flow
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(Eijkelkamp, Giesbeek, The Netherlands). Unsaturated hydraulic con-
ductivity and retention curves were determined by applying the Wind
method (Dane and Topp, 1994) using the Ku-pF Apparatus DT 04-01
(Umwelt-Geräte-Technik GmbH, Müncheberg, Germany). HYDRUS 1D
v4.12 (Simunek et al., 2008) was applied to invert Richards' equation
and calculate van Genuchten and Mualem parameters:

Se ¼ θ hð Þ−θr
θs−θr

¼ 1

1þ αhn
�� ��� �m

and

K θð Þ ¼ KsS l
e 1− 1−S1=me

� �mh i2

where Se is the effective saturation, l is the connectivity and tortuosity
parameter, θr and θs are the residual and saturated water content
(cm cm−1), α (L−1), n andm (m= 1− 1/n) are empirical parameters,
and Ks is the saturated hydraulic conductivity (cm d−1).

Soil texture was measured using a Mastersizer 2000 (Malvern
Instruments Ltd, Great Malvern, UK) while soil organic carbon (SOC)
was measured using a vario MACRO elemental analyzer device in CNS
mode (Elementar, Hanau, Germany).

2.3. Secondary variables

Exhaustive datasets are useful to geostatistical studies when used as
secondary variables and can greatly improve the prediction of primary
variables (Wackernagel, 2003). For this study, four data sets were
collected, namely ECa at 0–0.75 m (ECa075) and 0–1.5 m (ECa150)
depths, land elevation, and the inverse of bare soil reflectance as
measured with the Normalized Difference Vegetation Index (NDVI).
ECa datasets were collected in April 2011 using a CMD-1 frequency-
domain electric induction sensor (GF Instruments, Brno, Czech
Republic). The CMD-1 only collects one depth at a time because it
must be reconfigured for different depths. The data logger collects two
measurements at each point; all values at the same location were aver-
aged together to have one representative value for the point. For
Fig. 1.Map of the study site which is located on the southern edge of the Venice Lagoon, Italy.
blue) which are clearly visible in the aerial photography.
ECa075, a number of 18,053 measurements were collected at 9017 loca-
tions and 20,471 ECa150measurementswere collected at 10,221 locations.
Elevation was measured in February 2012 using a Trimble FM 1000 CNH
GPS receiverwith real timekinematic (RTK)differential correction (Trimble
Navigation Ltd., Sunnyvale, CA, USA) at 1564 locations. Bare soil NDVI was
measured in March 2012 using an APS1-CropCircle (Holland Scientific,
Lincoln, NE, USA) at 10,214 locations. This sensor uses light reflectance at
590 nm (VIS) and 880 nm (NIR) to calculate NDVI using NDVI = (NIR−
VIS) / (NIR + VIS) (Rouse et al., 1973). Each dataset was transformed, de-
trended and interpolated using ordinary kriging to a 1 m resolution grid
of 550 by 750 nodes using the approaches described below. Interpolated
values at the grid nodes were exported for a principal component analysis
(PCA). The loading of each node on principal component 1 (F1) was then
used as a secondary variable in the geostatistical study.

2.4. Spatial statistics

Each depth was treated as an independent dataset to add indepen-
dent observations of the spatial distributions and add strength to the
spatial analysis. It is well documented in the literature that hydraulic
parameters tend to not have normal distributions (Mallants et al.,
1996, 1997b; Botros et al., 2009). Though it is not an explicit require-
ment of kriging, extreme distributions may yield unreliable results
(Alary and Demougeot-Renard, 2010). For this reason, all variables
were transformed using a Hermitian transformation algorithm
(Wackernagel, 2003). The transformed variables are indicated with a′.
After transformation, all variables were de-trended byfitting a constant,
first or secondorder polynomialmodel to the data to satisfy the require-
ment of stationarity. Quality of fit was evaluated by calculating the
standard deviation of the residuals. The model that produced the least
variance in the residuals was selected. The four depths were treated as
independent data sets.

2.5. Variography

Experimental variograms and cross-covariograms were calculated.
Because of the semi-discontinuous interface between paleo-channels
The red rectangles bound the study site. The site is crossed by paleo-channels (marked in



Table 1
Summary statistics of primary variables.

Obs Mean Median Min Max Std. dev CV Skew Kurt

BD (g/cm3) 166 0.900 0.978 0.139 1.521 0.356 39.5 −0.60 −0.54
SOC (%) 128 10.04 7.81 0.10 26.99 6.86 68.3 0.58 −0.75
Clay (%) 163 15.73 15.06 0.85 34.26 8.25 52.4 0.38 −0.78
Sand (%) 163 45.39 43.78 12.95 92.09 18.70 41.2 0.37 −0.49
Silt (%) 163 38.87 40.46 7.06 62.51 11.45 29.4 −0.74 0.07
Ks (cm/d) 164 243.16 101.04 0.18 2630.10 405.24 166.7 3.89 18.43
l 164 −1.007 0.001 −19.496 6.201 2.774 −275.3 −2.90 13.70
α (1/cm) 164 0.046 0.032 0.003 0.184 0.036 77.9 1.36 1.47
n 164 1.45 1.22 1.07 4.14 0.53 36.9 2.68 8.27
θr (cm3/cm3) 164 0.199 0.195 0.000 0.599 0.121 60.8 0.73 0.91
θs (cm3/cm3) 164 0.603 0.580 0.298 0.950 0.129 21.4 0.63 −0.13
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and surrounding material and the arrangement of data locations, 1 to
2 points per depth were masked during this calculation if they contrib-
uted many high variance pairs at short distances. Lags having less than
5 pairs at the shortest lag distance, and variances higher than the next
longer lag were removed from further analysis because they prevented
model fitting. These points are prone to occur because the sample
locations were specifically selected to oversample areas with high
Fig. 2. A.) B.) C.) Histogram of SOC, θs, and bulk density, respectively. BD clearly has a bimodal di
BD grouped according to depth. The 8 cm and 28 cm depths are characterized by a linear relat
variability such as the sharp paleo-channel interfaces which differ
from the variability found in the rest of the field.

Many models were fit to the experimental variograms and cross-
covariograms, with experimental points that were weighted based
on the number of pairs in the lag. Quality of fit was evaluated by calcu-
lating the sum of squared residuals, and using the Akaike criterion and
Bayesian Information criterion which all tended to agree. The linear
stribution. This is also reflected in θs and to a lesser extent in SOC. D.) Scatter plot of SOC vs
ionship while 48 cm and 68 cm are clustered.

Image of Fig. 2


Fig. 3. A.) Capacitance curves reveal 3 different structural groups. Soils at shallow depths (8–28 cm) differ from soils at deeper depths (29–68 cm). Deep soils are further divided into high
BD (BD N 0.5 g/cm3) and low BD (BD b 0.5 g/cm3) illustrating the relationship between BD and depth. B.) Map of the locations of low BD samples. The pattern reflects the field elevation
pattern where the front portion of the field was buried during construction of the Morto Canal.
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model of coregionalization LMC was used as a constraint in all multi-
variate models to ensure that the matrix of semivariances was negative
semi-definite (Goovaerts, 1992). This model assumes that all variables
are influenced by the same processes and therefore uses the same
set of basic variogram structures for all variograms and cross-
covariograms (Wackernagel, 2003). Nested models with up to three
structures were tested (including nugget effect). Models were cross
validated in two ways. First, a leave-one-out cross validation was
preformed where only the collocated, secondary variable was known
at the removed point. As an additional check, a second leave-one-out
cross validation was preformed where all of the variables except the
one being predicted were known at the removed point. Both cross
validations were evaluated by calculating the correlation between the
actual and predicted values for each variable.

2.6. Factorial kriging analysis

Because FKA has been thoroughly described in the literature
(Goovaerts, 1992; Castrignanò et al., 2000; Chilés and Delfiner, 2012;
Wackernagel, 2003), only a brief overview is given here. The approach
consists of decomposing the set of original second-order random
stationary variables {Zi(x); i = 1,…,N} into a set of reciprocally orthog-
onal regionalized factors {Yvu(x); ν = 1,…,n; u = 1,…,NS} where NS is
the number of spatial scales, through transformation coefficients aivu ,
combining the spatial with the multivariate decomposition:

Zi xð Þ ¼
XNS

u¼1

Xn

v¼1

au
ivY

u
v xð Þ: ð1Þ
Table 2
Correlation table of transformed variables calculated with casewise deletion of missing values.

BD′ SOC′ Clay′ Sand′ Silt′

BD′
SOC′ −0.14
Clay′ −0.08 −0.18
Sand′ 0.13 0.23 −0.94
Silt′ −0.19 −0.21 0.82 −0.95
Ks′ −0.36 0.03 0.01 0.03 −0.06
l′ −0.21 −0.03 −0.24 0.25 −0.24
α′ −0.51 −0.02 0.25 −0.21 0.16
n′ 0.18 0.13 −0.72 0.7 −0.63
θr′ −0.33 0.06 −0.02 −0.03 0.11
θs′ −0.87 0.12 0.25 −0.32 0.37

(N= 126) Bold font denotes significance of P b 0.001.
The three basic steps of FKA are as follows (Castrignanò et al., 2000):

1) Modeling the coregionalization of a set of variables, using the so-called
linearmodel of coregionalization (LMC;Wackernagel, 2003), and esti-
mating soil attributes by cokriging;

2) analyzing the correlation structure between the variables at the
different spatial scales by applying principal component analysis
(PCA);

3) cokriging specific factors at characteristic scales and mapping them.

The LMC, developed by Journel and Huijbregts (1978), assumes that
all the studied variables are the result of the same independent process-
es, acting at different spatial scales u. The N(N+1) / 2 simple and cross
semivariograms of the N variables are modeled by a linear combination
of NS standardized semivariograms to unit sill, gu(h). Using the matrix
notation, the LMC can be written as:

Γ hð Þ ¼
XNS

u¼1

Bugu hð Þ ð2Þ

where Γ(h)= [γij(h)] is a symmetricmatrix of orderN×N, whose diag-
onal and non-diagonal elements represent simple and cross
semivariograms, respectively for lag h; Bu = [buij] is called
coregionalization matrix and is a symmetric positive semi-definite ma-
trix of the orderN× Nwith real elements buij at a specific spatial scale u.
The model is authorized if the mathematical functions gu(h) are autho-
rized semivariogrammodels. Themapped PCs visually show the sources
of variance and can be interpreted to infer the underlying processes. Re-
gionalized principal component analysis consists of decomposing each
Ks′ l′ α′ n′ θr′ θs′

`

0.41
0.59 −0.09

−0.14 0.19 −0.22
−0.06 −0.04 0.28 0.25

0.23 0.11 0.37 −0.37 0.35

Image of Fig. 3


Table 3
Summary of spatial models.

Depth (nom.) # of Varsa Shortb(m) Longb (m) SSRc L/Sd

8 9 106.8 224.5 0.028 0.759
28 8 153.0 285.4 0.049 0.877
48 9 74.2 209.9 0.094 1.627
68 8 92.0 216.5 0.098 4.267

a # of Vars is the number of variables used in the spatial model.
b Short and long represent the short and long scale ranges for the spatial models

respectively.
c SSR is the sum of squared residuals of the experimental data to the fitted model.
d L/S is the ratio of long to short scale Eigenvalues of the first PCs and represents a ratio

of the variance represented by long scale processes to that of short scale processes.

Table 4
Leave-one-out cross validation with only secondary variable known.

Depth (nom.) 8 28 48 68

BD* 0.65 0.64 0.48 0.62
Sand* 0.39 0.36 0.47 0.52
Clay* 0.36 NA 0.48 NA
Ks* 0.22 0.31 0.33 0.43
α* 0.44 0.34 0.35 0.65
n* 0.24 0.39 0.42 0.62
θr* 0.30 0.22 0.07 0.12
θs* 0.64 0.55 0.47 0.72

Values are correlations between actual and predicted.

Table 5
Leave-one-out cross validation with all variables known.

Depth (nom.) 8 28 48 68

BD* 0.89 0.90 0.93 0.86
Sand* 0.88 0.39 0.90 0.65
Clay* 0.86 NA 0.91 NA
Ks* 0.60 0.65 0.66 0.60
α* 0.75 0.71 0.84 0.89
n* 0.78 0.76 0.73 0.73
θr* 0.76 0.78 0.64 0.54
θs* 0.91 0.78 0.93 0.84

Values are correlation between actual and predicted.
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coregionalization matrix Bu into two other diagonal matrices: the matrix
of eigenvectors and the matrix of eigenvalues for each spatial scale u
through the matrix Au of order N × N of the transformation coefficients
aiv
u (Wackernagel, 2003). The transformation coefficients aivu in thematrix

Au correspond to the covariances between the original variables Zi(x) and
the regionalized factors Yvu(x). The behavior and relationships among
variables at different spatial scales can be displayed by interpolating the
regionalized factors Yvu(x) using cokriging and mapping them. After a
model was fitted, regionalized correlation coefficients were calculated
from the respective sill values. Using the regionalized correlationmatrices
as input, a regionalized PCA was computed for each range as a normal
PCAwould be. Maps of each PC were made by interpolating the projec-
tion of the measured points on the PC of interest. Secondary data were
incorporated in amulti-collocated cokriging scheme to improve accura-
cy of interpolation and therefore the map reliability.

All of the geostatistics were performed using ISATIS (Geovariances
and Ecole des Mines de Paris, 2013). Some graphical and data process-
ing tools from ArcMap 10.1 (ESRI, Redlands, CA, USA) and Matlab
(MathWorks, Natick, MA) were also used.

3. Results and discussion

3.1. Descriptive statistics

For the most part the distributions of primary variables are not nor-
mal. In particular, l, Ks, and n have strongly asymmetric distributions
with an absolute skewness higher than 2. The connectivity and tortuos-
ity parameter l, is very near −1 on average (Table 1) confirming the
results of Schaap and Leij (2000) which found that −1 was a better
value for l than 0.5, the commonly used value (Mualem, 1976). Bulk
density and θs have a bimodal distribution which is most obvious on
the lower range of bulk density as seen in Fig. 2C. The contrasting nature
of the soils, characterized by the presence of peaty horizons (Gambolati
et al., 2006), could have influenced this behavior. If this is the reason, a
similar bimodal distributionwould be also expected for SOC.However, a
visual inspection of the SOC histogram (Fig. 2) is inconclusive. A scatter
plot of SOC vs BD (Fig. 2) reveals a clear negative relationship at the 8 cm
and 28 cm depths, as usually observed (Loveland andWebb, 2003), but
no trendor anunclear trend is observed at 48 cmand68 cmdepths. This
shallower versus deeper grouping is common among many variables
most likely because of the 30-cm depth plowing (Scudiero et al.,
2013) that could have influenced the soil structure. Other authors
have highlighted that the spatial distribution of hydraulic properties re-
lated to natural pedogenetic processes can be affected by anthropogenic
activities at shallow depth (Herbst et al., 2006).

Another possible explanation for the bimodal BD distribution is soil
structure. Structural information was not recorded on the soil samples
but pore size distributions can be used as a substitute. A pore size distri-
bution can be approximated by the capacitance function which is the
derivative of the WRC curve (Radcliffe and Simunek, 2010). Grouping
and averaging the capacitance curves by depth and bulk density
(Fig. 3A) reveal three groups with differing structures.

All but one of the low BD samples (BD b 0.5 g/cm3) are located at
48 cm and 68 cm. Fig. 3B reveals that these points are all near the north-
ern edge and away from the paleo-channels. Because this front edge
was filled in, deeper samples in this portion of the field will represent
the original surface and will reflect properties of the original soils.

In order to add clarity to the analysis of relationships, the correlation
matrix of Pearson correlation coefficients of the transformed variables
was calculated using casewise deletion of missing values (Table 2).
Bulk density is not correlated with texture, a finding that emphasizes
the complex nature of the variable. Many of thewell documented corre-
lations among hydraulic variables are also observed, for instance α and
Ks, BD and θs (Walczak et al., 2002; Botros et al., 2009; Mallants et al.,
1996). One expected relationship that is not found is between texture
and Ks.

3.2. Secondary variables

Apparent soil electrical conductivity and bare-soil NDVI spatial data
displayed high variability across the study site. The ECa075 and ECa150
maps showed nearly identical spatial patterns, yet they differed in
values and ranges. The ECa075 was characterized by an average
(0.65 dS m−1) lower than that of ECa150. The lowest ECa values were
observed in the paleochannels, with minimum values equal to 0.12
and 0.31 dS m−1 for ECa075 and ECa150, respectively, recorded in the
western paleochannel (low clay content, low SOC, and high BD). Con-
versely, the maximum ECa values (1.75 and 2.78 dS m−1 for ECa075
and ECa 150, respectively) were associated with saline loamy soils in
the northern part of the study site. Bare-soil NDVI also varied greatly
across the area, with a north–south gradient: in the northern part of
the study site, where texture was finer, NDVI ranged between 0.148
and 0.242. The NDVI increased gradually southward reaching a maxi-
mum value of 0.418.

A PCA of the residuals of the four transformed data sets, ECa075,
ECa150, elevation, and NDVI, offers a principal component (F1) which
describes 80.1% of the variance in the data. Both ECa data sets contribut-
ed strongly on this component and land elevation to a lesser extent.
Elevation contributed in an opposite direction to ECa on F1. NDVI did
not significantly load on F1 but contributed strongly on principal
component 2 (F2). Because only F1 is used in the subsequent analysis,
NDVI does not add much to this study.
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3.3. Spatial statistics

3.3.1. Variography
The best fit of the experimental variograms was obtained by a

two-nested spherical model (Table 3). Fitting the linear model of
coregionalization (LMC) becomes more difficult as the number N of var-
iables is added to the analysis increases, since it requires N(N + 1) / 2
variograms. For this reason, only the most representative variables
were selected. Sand and clay were used to represent texture, but clay
was excluded for 8 cm and 68 cm depths. SOC at 8 cm and 28 cm depths
followed the samepatterns as BDand added little new information as ex-
pected because of the strong global correlation between these two pa-
rameters. At depths of 48 cm and 68 cm, SOC had a poor spatial
structure characterized by high nugget effect and hence was removed
from the analysis. F1 was used as a secondary variable for all depths ex-
cept 8 cm where elevation was more informative. Over all, short ranges
(short) tended to be around 105 m and long ranges (long) about
235m. The leave-one-out cross validationwhere only the secondary var-
iable is known illustrates that themodels represent some individual var-
iables only moderately well while others are represented much better
(Table 4). However, given the large number of variables, this is to be ex-
pected. The second cross validation approach (Table 5) where all of the
non-predicted variables are known results in much higher correlations.
It isworth noting that, although a higher sample numberwould improve
the results, the cross-validation presented in Tables 4 and 5 supports the
validity of the results, also accounting for the complexity of the hydraulic
analyses.

3.3.2. Regionalized relationships
The regionalized correlations show many strong relationships that

were not obvious from the global correlations summarized in Table 2.
Finding these trends reveals the benefit of including scale and autocor-
relation in soil analysis. The variables in this section are the residuals
from de-trending the transformed variables and are indicated with a*.
In most cases, the primary variables had a strong correlation with the
secondary variable for at least one range. This means that secondary
variables hold relevant information to this study.
Table 7
Regionalized correlation coefficients at 28 cm depth.

F1 BD* Sand* Ks* α* n* θr* θs*

F1 −1.00 −0.13 0.34 0.60 −0.31 0.44 0.86
BD* −1.00 0.17 −0.37 −0.62 0.35 −0.39 −0.85
Sand* −1.00 0.99 −0.92 −0.75 0.94 0.78 −0.14
Ks* 0.79 −0.81 −0.74 0.94 −1.00 −0.48 0.49
α* 0.99 −1.00 −0.98 0.85 −0.93 −0.18 0.75
n* −0.80 0.82 0.75 −1.00 −0.86 0.53 −0.45
θr* 0.83 −0.84 −0.78 1.00 0.88 −1.00 0.51
θs* 0.95 −0.96 −0.92 0.94 0.98 −0.94 0.96

Bottom triangle is short range coefficients and top triangle is long range coefficients. Bold
values denote statistical significance (P = 0.0005) as calculated by an F-test.

Table 6
Regionalized correlation coefficients at 8 cm depth.

Elev* BD* Clay* Sand* Ks* α* n* θr* θs*

Elev* 0.89 −0.18 0.26 −0.95 −0.07 0.51 −0.79 −0.74
BD* 0.77 −0.01 0.02 −0.88 0.36 0.56 −0.80 −0.65
Clay* −0.18 −0.55 −0.99 0.43 0.66 −0.78 0.60 0.77
Sand* 0.08 0.53 −0.99 −0.47 −0.75 0.73 −0.59 −0.78
Ks* −0.72 −0.86 0.07 −0.08 0.12 −0.75 0.93 0.90
α* −0.83 −0.93 0.67 −0.61 0.66 −0.12 0.05 0.32
n* 0.26 0.57 −0.99 0.96 −0.08 −0.73 −0.93 −0.93
θr* 0.00 −0.09 0.83 −0.77 −0.43 0.38 −0.85 0.96
θs* −0.70 −0.99 0.57 −0.57 0.86 0.90 −0.59 0.08

Bottom triangle is short range coefficients and top triangle is long range coefficients. Bold
values denote statistical significance (P = 0.0005) as calculated by an F-test.
Sand* and n* have a very strong, positive relationship at long range;
at short range, trends change with depth from strong positive at 8 cm
and 28 cm to no correlation and negative correlation at 68 cm. This is
interesting because sand′ and n′were globally correlated (all depth con-
sidered together). Typically, variables that are globally correlated show
the same relationships at all scales as the relationship is not necessarily
scale dependent. In this case, at the depthswhere the correlation coeffi-
cients of sand* and n* are opposite, the influence of the short scale pro-
cess is less than the influence of the long scale processes (Tables 6–9).
Sand* and α* are negatively correlated throughout all ranges and
depths, a finding opposite to many others (Biswas and Si, 2009; Li
et al., 2006). The magnitude of the Sand* and α* relationships indicates
that the nugget effect on these variables masks important information
and reveals the advantage of investigating the effects of scale as globally,
these two variables did not have a clear relationship.

Except for 8 cm long range (Table 6), α* and BD* have a strong,
negative correlation. Biswas and Si (2009) also found a negative α and
BD relationship. BD* and Ks* and Sand* and Ks* are mostly negatively
correlated except for at 48 cm long scale (Table 8) and 68 cm short
scale (Table 9). The relationships between BD* and Ks* are stronger
than the relationships between texture* and Ks*, indicating a major
role played by bulk density on Ks and explaining the oddly negative re-
lationships observed between Ks and sand, in oppositions tomany other
findings (e.g. Jaynes and Tyler, 1984; Puckett et al., 1985).

At short scale, the BD* and Ks* relationship acts in the same direction
as the BD* and n* relationship at some depths, but at others, they act in
different directions. Whether or not they act in the same or a different
direction appears to be related to the strength of the relationship
between BD* and Sand*. If the BD* and Sand* relationship is strong,
they act in opposite directions, if it is weak, they act in the same direc-
tion. This suggests that an interaction between texture and bulk density
may influence relationships with these hydraulic parameters. Of all of
the parameters, θr tends to have the least physical significance and is
viewed by many researchers as a fitting parameter (Radcliffe and
Simunek, 2010). Because of this, it added little to the analysis.

Many of the relationships are strong but variable with depth. This
variability masks global trends and makes deciphering the processes
Table 8
Regionalized correlation coefficients at 48 cm depth.

F1 BD* Clay* Sand* Ks* α* n* θr* θs*

F1 −0.57 0.70 −0.66 −0.40 0.49 −0.65 −0.34 0.57
BD* −0.97 −0.67 0.62 0.54 −0.33 0.78 0.05 −0.96
Clay* −0.08 0.21 −0.98 −0.03 0.29 −0.97 −0.76 0.68
Sand* −0.07 0.25 0.78 −0.10 −0.31 0.97 0.78 −0.67
Ks* 0.55 −0.61 0.17 −0.38 0.18 0.07 −0.48 −0.47
α* 0.70 −0.77 0.05 −0.40 0.97 −0.29 −0.10 0.23
n* 0.97 −0.96 0.06 −0.07 0.71 0.83 0.64 −0.81
θr* 0.64 −0.63 0.40 −0.08 0.94 0.92 0.79 −0.07
θs* 0.99 −0.93 −0.05 0.03 0.46 0.61 0.93 0.59

Bottom triangle is short range coefficients and top triangle is long range coefficients. Bold
values denote statistical significance (P = 0.0005) as calculated by an F-test.

Table 9
Regionalized correlation coefficients at 68 cm depth.

F1 BD* Sand* Ks* α* n* θr* θs*

F1 −0.30 −0.62 0.03 0.36 −0.52 0.21 0.36
BD* −0.99 0.83 −0.96 −0.92 0.89 0.16 −0.99
Sand* −0.82 0.89 −0.67 −0.95 0.99 −0.36 −0.89
Ks* −0.72 0.80 0.99 0.84 −0.76 −0.29 0.93
α* 0.09 −0.21 −0.64 −0.76 −0.98 0.23 0.96
n* 0.93 −0.97 −0.97 −0.92 0.44 −0.29 −0.94
θr* 0.61 −0.70 −0.95 −0.99 0.84 0.85 −0.05
θs* 1.00 −1.00 −0.86 −0.76 0.15 0.96 0.66

Bottom triangle is short range coefficients and top triangle is long range coefficients. Bold
values denote statistical significance (P = 0.0005) as calculated by an F-test.



Table 10
Regionalized PCA summary.

Elev* F1 BD* Clay* Sand* Ks* α* n* θr* θs* Eigen % var

PC1S8 0.11 NA 0.44 −0.18 0.21 −0.30 −0.67 0.23 −0.07 −0.35 1.70 76.8
PC2S8 −0.11 NA −0.19 −0.35 0.43 0.55 −0.05 0.42 −0.38 0.14 0.43 19.5
PC1L8 0.20 NA 0.22 −0.41 0.48 −0.20 −0.01 0.12 −0.40 −0.54 1.29 72.5
PC2L8 −0.34 NA −0.58 −0.43 0.48 0.21 −0.02 −0.01 0.26 0.13 0.46 25.7
PC1S28 NA −0.47 0.42 NA 0.11 −0.32 −0.44 0.25 −0.12 −0.47 1.95 94.4
PC2S28 NA 0.41 −0.32 NA −0.14 −0.62 0.19 0.47 −0.20 −0.19 0.12 5.6
PC1L28 NA 0.75 −0.43 NA −0.15 0.17 0.14 −0.17 0.14 0.38 1.71 61.0
PC2L28 NA −0.17 0.07 NA −0.65 0.35 0.15 −0.39 −0.49 −0.05 0.97 34.5
PC1S48 NA 0.31 −0.46 0.01 −0.02 0.48 0.43 0.08 0.36 0.38 2.39 78.1
PC2S48 NA −0.33 0.41 0.08 −0.05 0.54 0.27 −0.04 0.30 −0.51 0.56 18.3
PC1L48 NA 0.46 −0.15 0.45 −0.48 −0.01 0.10 −0.52 −0.12 0.18 3.89 77.9
PC2L48 NA 0.81 −0.02 −0.20 0.28 −0.08 0.30 0.30 0.18 −0.01 0.62 12.5
PC1S68 NA −0.48 0.50 NA 0.25 0.15 −0.08 −0.12 −0.54 −0.35 0.97 83.4
PC2S68 NA −0.45 0.30 NA −0.12 −0.14 0.33 −0.01 0.71 −0.26 0.19 16.6
PC1L68 NA −0.32 0.36 NA 0.44 −0.22 −0.43 0.45 −0.04 −0.38 4.15 73.8
PC2L68 NA −0.86 −0.25 NA 0.09 0.30 0.18 −0.03 −0.15 0.21 1.12 19.9
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difficult. One source of inconsistency is associatedwith the bimodal dis-
tribution of bulk density. The different modes likely act in very different
ways and as a consequence it is possible that studying them indepen-
dently would be more informative. Similarly, Zimmermann et al.
(2013) have found difficulties in detecting deterministic trends in Ks
patterns because of the variability associated to the small-scale spatial
variation. However, that analysis is beyond the scope of this study.
Whilemany relationships are exploredhere, the soil structure is one po-
tentially revealing variable that is not addressed in this study. Texture
Fig. 4.Maps of retained PCs and their distribution counterparts at 8 cm depth. S1XX designate
ponent in ranked order from most variance explained to least variance explained. Maps in the
the FKA maps based on visual assessment of the spatial distribution.
and bulk density have very inconsistent relationships with hydraulic
parameters (Weynants et al., 2009; Schaap and Bouten, 1996; Wösten
et al., 2001) and are not well understood. Soil structure is likely to cap-
ture the interaction effects between texture and bulk density (David
Radcliffe, personal communication) which may aid in deciphering
these complex relationships. Soil structure has also been suggested as
a potential predictor variable for PTF (Pachepsky et al., 2006; Li et al.,
2006). At all depths and scales, the first PC explained the majority of
the variance ranging from 94.4% to 61.0% (Table 10). The second PC
s short range while S2XX designates long range. F1, F2, etc. designates the principal com-
left column are FKA results and maps in the right column are the best physical match to

Image of Fig. 4


Fig. 5. Maps of retained PCs and their distribution counterparts at 28 cm depth. See the caption of Fig. 4 for the panel description and labeling.
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explained between 34.5% and 5.6% of the variance. Of the second PCs,
only the 28 cm long range was retained. The eigenvalues quantify the
variance represented by each PC in absolute terms. Because they are
absolute, we can use the ratio between eigenvalues for the first PC of
long scale and short scale to identify which process is more dominant
(Table 3). There is a strong trend between the L/S ratio and depth. At
shallow depths, short scale processes are more dominant. As depth
increases, long scale processes become more dominant. A second
piece of supporting evidence comes from the strong linear trend
(R2 = 0.92) of decreasing sum of squared residuals (SSR) with depth.
This makes sense because many short scale processes such as microbial
activity, plant roots and others occur near the surface and not at depth.
At the short scale, PC1 (PC1SXX) is characterized by strong contribu-
tions from BD* and θs* (Table 10). α* and Ks* also tend to contribute to
PC1SXX with α* loading slightly stronger than Ks*. This reflects the rel-
ative strengths in their relationships with BD*. It is not surprising that
α* loads on the PC with BD* as one of the major differences between
the curves in Fig. 3A is a lateral shift. Since there is a global trend and
strong trends at this scale between Ks* and α*, it is also not surprising
that Ks* loads too. As noted above, BD* appears to play a large role
with Ks* than texture. In this case, texture does not really load and the
loading strengths over all are weak. This makes inferences about a pos-
sible BD*, Sand* interaction impossible. In general, 68 cm deviates from
the other layers at this scale.

Image of Fig. 5


Fig. 6. Maps of retained PCs and their distribution counterparts at 48 cm depth. See the caption of Fig. 4 for the panel description and labeling.
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At the long scale, PC1 (PC1LXX) is related to texture at all depths
except 28 cm (Table 10). In general, 28 cm behaved differently than
the other layers at this scale likely due to poor representation by the
secondary variable (F1). 48 cm and 68 cmhave similar behavior where-
as 8 cm and 28 cm are more similar. At depths of 48 cm and 68 cm, n*
also contributes strongly on PC1L48 and PC1L68 respectively.

3.3.3. Spatial distribution of PCs
Spatial distributions of the retained PCs resemble the distributions of

some of the studied variables as seen in Figs. 4–7. Contributions may be
negative and thereforemapsmay be reciprocal yet have the same distri-
bution. This is the case of PC1S08 with BD* or PC1L08 whith Elevation*
(Fig. 4). PC1L28 is almost identical to F1, the secondary variable and
PC2L28 resembles the distribution of Sand*, confirming the suspicion
that F1 does not represent this layer well at long scale (Fig. 5).

At 48 cm (Fig. 6), the short scale PC1S48map is identical to the map
of BD* for this depth and long scale PC1L48 has a near identical match
but to Sand* which resembles the shapes of the paleo-channels. The re-
lationships at 68 cm (Fig. 7) are similar to those at 48 cmexcept a strong
deviation in the southwest corner of PC1S68 from the distribution of
BD*. Overall, the short scale distributions tend to visually resemble BD
while the long scale distributions tend to visually resemble texture*
and the paleo-channels.

4. Conclusions

The application of geostatistics to soil science has the potential to
address some of the field most pressing issues. In particular, FKA is use-
ful for identifying the underlying processes that affect the soil variables
that are regularly studied. This type of analysis is effective at identifying
relationships by removing scale dependency from the variables. When
this is done, relationships become strong and more obvious. A subse-
quent variable reduction decreases the variable space into common
factors which represent the related processes that act in the soil. Maps
of these common factors can be used to identify the real world process.
An issue of concern in unsaturated hydraulic research is that laboratory
and fieldmeasurements often are not in agreement. This is likely caused
by two sources of error, laboratory measurement errors and errors
resulting from heterogeneity in the field.

This study assesses and demonstrates the use of FKA and related
techniques to describe the heterogeneity of the field and identify how
this heterogeneity affects the variables of interest. The originality of
this study also relies on the application of the multivariate approach
on a large dataset of unsaturated hydraulic parameters measured at
different depths. The most significant finding is that physical variables
and hydraulic variables both load on the same set of PCs. At short
scale (less than 100 m), distributions tended to resemble bulk density
while long scale (higher than 200 m) distributions resembled texture
and the paleo-channel. This indicates that physical properties and
hydraulic properties are linked to the same set of causal processes
with the latter that can be estimated from the former. While this does
not add value directly to the development of PTF, it does confirm that
spatial application of PTF will likely find success. Also, using the spatial
characteristics of the soil physical properties could be used to design a
more efficient sampling scheme for soil hydraulic measurements.

This study suggests that there are many variables to considerer
when investigating field versus lab error. For instance, depth is usually
an under rated variable. We show that relationships between variables

Image of Fig. 6


Fig. 7. Maps of retained PCs and their distribution counterparts at 68 cm depth. See the caption of Fig. 4 for the panel description and labeling.
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change markedly along depth, with short scale processes that are more
dominant than long scale processes closer the surface.

Considering the positive outcome of FKA, future studies will attempt
tomake zonal classification of hydraulic parameters fromproximal and/
or remotely sensed datasets to improve the application of advanced
numerical models.
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