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Abstract. It is generally accepted that aerial images of growing crops provide spatial and temporal

information about crop growth conditions and may even be indicative of crop yield. The focus of this

study was to develop a straightforward technique for creating predictive cotton yield maps from aerial

images. A total of ten fields in southern Georgia, USA, were studied during three growing seasons.

Conventional (true color) aerial photographs of the fields were acquired during the growing season in two

to four week intervals. The aerial photos were then digitized and analyzed using an unsupervised classi-

fication function of image analysis software. During harvest, conventional yield maps were created for

each of the fields using a cotton picker mounted yield monitor. Classified images and yield maps were

compared quantitatively and qualitatively. A pixel by pixel comparison of the classified images and yield

maps showed that spatial agreement between the two gradually increased in the weeks after planting,

maintained spatial agreement of between 40% and 60% during weeks eight to fourteen, and then gradually

declined again. The highest spatial agreement between a classified image and a yield map was 78%. The

highest average agreement was 52% and occurred 9.9 weeks after planting. The visual similarity between

the classified images and the yield maps were striking. In all cases, the dates with the best visual agreement

occurred between eight and ten weeks after planting, and generally, during July for southern Georgia. This

method offers great potential for offering cotton farmers early-season maps that predict the spatial dis-

tribution of yield. Although these maps can not provide magnitudes, they clearly show the resulting yield

patterns. With inherent knowledge of past performance, farmers can use this information to allocate

resources, address crop growth problems, and, perhaps, improve the profitability of their farm operation.

These maps are well suited to be offered to farmers as a service by a crop consultant or a cooperative.
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Introduction

It is generally accepted that aerial images of growing crops provide spatial and
temporal information about crop growth conditions and may even be indicative of
crop yield (Yang and Everitt, 2002; Vellidis et al., 2001). Because of this, research
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teams are evaluating a multitude of remote sensing techniques for assessing the
status of growing crops. These techniques vary from hyper-spectral imaging to detect
plant stress to infrared imaging for irrigation scheduling. Much of this work has
focused on using the visible and near-infrared wavelengths to develop vegetation
indices such as the normalized difference vegetation index (NDVI) to estimate the
nitrogen status of growing crops (Filella et al., 1995; Li et al., 2001a; Read et al.,
2002; Tarpley et al., 2000; Thenkabail et al., 2000; Walburg, et al., 1982).
More recently, remotely-sensed imagery has been used to estimate yields for corn

(Shanahan et al., 2001; Yang et al., 2001), grain sorghum (Yang and Everitt, 2002;
Yang et al., 2001) and cotton (Plant et al., 2000; Yang et al., 2001). In most cases the
NDVI or similar vegetation indices were used to estimate plant stress or vigor and thus
indirectly infer expected yields. Yang et al. (2001) found that yield maps generated
from regression equations for yield as a function of a spectral band or a vegetation
index corresponded closely with yield monitor data maps for corn and grain sorghum.
The relative error between regression estimated yield and cotton gin yield was near
34%. The date of data acquisition appeared to have an effect on relative errors (Yang et
al., 2001). Boydell andMcBratney (2002) used eleven years of remotely-sensed cotton
yield estimates to establish within-field management zones. They found that the fields
exhibited a high degree of temporal stability. These techniques all require the ability to
collect high quality multispectral images and also require a high level of analysis which
makes them difficult to implement by most crop consultants and farmers.
Because of this body of work, the University of Georgia Precision Agriculture

Team has routinely commissioned low-level (below 3000 m) aerial photographs of
fields in which precision agriculture research is conducted. When we compared
cotton yield maps to color photographs of the crop taken early during the growing
season, we observed impressive similarities in spatial patterns. Following several
such observations, we hypothesized, like other researchers, that it might be possible
to create representative yield maps from aerial photographs. However, we were
interested in developing these maps with a simple technique that did not require
specialized equipment and software and that could be readily used by crop consul-
tants, cooperatives, and farmers. The ability to create these maps would benefit
farmers in a number of ways. For small farmers without the resources to purchase
yield monitors, the technology could provide yield maps at an acceptable cost. For
all farmers, however, this technique has the ability to predict yields early in the
season and enable management decisions that may positively affect profitability.
To test if there is a scientific underpinning to our hypothesis, we began a three year

study that entailed photographing cotton fields at two to four week intervals during
the growing season and comparing the photographs to yield maps created from
picker-mounted yield monitors. This article describes our findings.

Materials and methods

A total of ten fields were studied—three during 1998, two during 1999, and five
during 2000. The fields were located in southern Georgia, USA, ranged in size from
8 ha (20 ac ) to 26 ha (63 ac). Slopes were less than 5% and soils ranged from sandy
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loams to loamy sands. All fields were strip-tilled and irrigated with center pivot
systems. Cotton varieties were the same within fields but varied from field to field.
Rows were planted on 0.91 m (36 in.) or 0.96 m (38 in.) centers. All decisions on
crop management were made exclusively by the farmers so that planting dates,
application of agrochemicals, and harvest dates varied from field to field.

Aerial photography

Color aerial photos of the fields were acquired beginning about week four of the
growing season and in two to four week intervals thereafter. The photographs were
taken with single lens reflex 35 mm cameras equipped with autofocus and mounted
in the underside of a single-engine aircraft that is routinely contracted by the United
States Department of Agriculture Farm Services Agency (USDA-FSA) for com-
pliance photography. The images were exposed onto color slide film and the
resulting slides were generally of good quality.
The aerial photos were taken at altitudes between 1000 and 3000 m. Altitude

was a function of fitting the entire field within a single slide frame. Once devel-
oped, the slides were digitized at high resolution (2700 dpi) with a Polaroid
SprintScan 35 slide scanner. The digital images resulted in files 12–20 Mb in size
with three spectral bands (red, green, blue). With the concurrent decrease in price
and increase in available resolution, the conventional 35 mm camera and slide
scanner can now be replaced with a high-resolution digital camera. When the
study began however, the cost of a high-resolution digital camera precluded its use
in the study.

Harvest

Conventional yield maps were created for each of the fields using the latest gen-
eration Agri-Plan (Zycom) yield monitor available on the market for each of the
three years. The 1998 and 1999 maps were created with a yield monitor mounted
on a University of Georgia-owned 4-row John Deere 9965 cotton picker with
sensors mounted on each of the four chutes. The 2000 maps were created with a
yield monitor mounted on a farmer-owned and operated 2-row John Deere 9930.
Detailed information on the performance of the yield monitors and techniques
used during harvest were presented by Durrence et al. (1999) and Vellidis et al.
(2003a).

Image analyses

The digitized aerial photos were analyzed using the ERDAS� Imagine v.8.3.1
software which is a high-end image analysis package. The first step in the image
analysis process consisted of importing the image and performing a first order
polynomial geometric correction in order to rectify it. The rectification was
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accomplished by using the latitude and longitude (lat/long) of preestablished ground
control points (GCP) on the perimeter of the field. The lat/long used for each GCP
was the mathematical mean of 300 data points collected with an Omnistar 7000 C-
band differentially corrected global positioning system (DGPS).
The next step consisted of defining an area of interest, which in our case, was the

field boundary. An area of interest contained up to 3 million pixels with up to 60,000
colors. A pixel corresponded to an area of 0.09–0.25 m2. Then, an unsupervised
classification was performed on the area of interest. In an unsupervised classification,
the objective is to group multiband spectral response patterns into clusters. The
clusters are statistically different sets of multiband data—radiances expressed by
their digital number (DN) values. DN values range from 0 to 255 in the red, green,
and blue bands. Thus, a range of DNs can establish one cluster that is set apart from
a specified range combination of another cluster (Sabins, 1987). In this work,
unsupervised classification was used to group the pixels into a user-specified number
of clusters.
Maas (1997, 1998) concluded from detailed measurements of cotton canopy

reflectance obtained at different locations over several years that reflectance is driven
by percent ground cover rather than canopy density. In practical terms, the classi-
fication process we selected was driven by canopy cover and reflectance in the green
band. In early season cotton (twelve weeks or less since planting), pixels in which
green was the predominant reflectance band represented areas in the field in which
little or no bare soil was visible. These pixels were grouped together and assumed to
represent higher yielding areas. Areas in which green was not the predominant
reflectance band where characterized by bare soil and a sparse canopy. These were
assumed to represent low yielding areas. An intermediate green reflectance repre-
sented medium yields. On the field, this classification method corresponded to per-
cent ground cover and to the vitality of the cotton plants. The higher the leaf area
and greener the plants within a pixel, the higher the yield category to which it was
assigned.
The optimal number of yield categories that should be displayed on a yield map is

a matter of debate. Our preference, and the preference of our farmer partners, is to
display three or four yield categories. Consequently, our first attempts at classifi-
cation were with three and four categories which created three or four non equally
distributed clusters or classes.
To effectively compare the classified images to the yield maps, the yield map

categories were modified to match the distribution of pixels in the images. For
example, if the pixel distribution in a classified image resulted in 42% of the pixels
assigned to low yield category, 28% in the medium, and 30% in the high, then the
yield map yield categories were established so that lowest 42% of data were in the
low yield category, 28% in a medium yield category, and 30% in a high yield cate-
gory.
Despite our best efforts to ensure the pilot was taking good quality images, several

full color aerial photographs were not usable. In some cases this was caused by cloud
shadows on the field. In other cases, irrigation was in progress which had a major
effect on the reflectance of the wetted area. On one occasion, haze resulted in an
unuseable image. In all, we compared 53 images to the ten yield maps.
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Spatial comparison

In the next step of the analysis, the spatial agreement between the classified images
and the corresponding yield maps was determined quantitatively using ArcView’s
Spatial Analysis extension. The classified images for each field and date, along with
the yield map data for each field, were imported into the ArcView�GIS 3.2 software.
The classified images, which were produced in ERDAS Imagine and were cell based
raster files, were converted to Arcview raster data called grids. The yield maps which
consisted of georeferenced point data, were also converted to ArcView grid files. For
easy comparison, both grid files were created with 2.5 m cell sizes using the nearest
neighbor technique to aggregate cells. The cell size and aggregation technique was
selected after evaluating a wide range of cell sizes and several aggregation techniques.
In both grid files, high yield cells were given a value of 1, medium yield cells a value

of 2, and low yield cells a value of 3. To determine to what extent the yield values of
the classified images spatially agreed with the yield values of the yield maps, an
ArcView map calculation was performed. The calculation performed an overlay in
which each yield map cell’s value of 1, 2, or 3 was multiplied by ten and added to the
value of the corresponding classified image cell (values of 1, 2, or 3). The resulting
ArcView overlay map contained cells with values of 10, 11, 12, 13, 20, 21, 22, etc.
Cells with values of 11, 22, or 33 indicated where the yield map cell values spatially
aggreed with the classified image cell values. The percentage of cells with spatial
agreement for each image were determined from these values.
Only areas for which both yield map and classified image coverages were available

were included. By default, the first map listed in the map calculation, in this case the
yield map, determined the area covered by the calculation because classified image
cells outside of the area covered by the yield map are not included in the calculations.
In addition, cells with values of 10, 20, and 30 were not included in the final per-
centage calculations because a zero in the value indicates there was no classified
image cell at that location.

Hand-harvested plots

To ground-truth the predictive ability of the classified aerial images, small plots were
selected in the Willis, Mangum, and Sumner 1998 fields and hand harvested the day
before the mechanical harvest. The location of the plots was selected from the
corresponding July, 1998 aerial photograph (not the classified image) which was
taken nine, eight, and ten weeks after planting, respectively. Plot location in the
Sumner and Willis fields is shown in Figure 1.
In the Sumner field, a total of six 9 m · 11 m (30 ft · 36 ft) plots were

selected—two replicates of anticipated low, medium, and high yields (Figure 1). The
length of the plots was selected to coincide with the distance covered by a cotton picker
in 5 s. The width coincided with 3 passes of the picker. Because of the large amount of
labor required to harvest the Sumner field plots, fewer and smaller plots were selected
in the Mangum and Willis fields. Five 3.7 m · 3.7 m (12 ft · 12 ft) plots were
selected. Their size was chosen to coincide with 2 s of picker travel during one pass.
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The lat/long coordinates of the plots were identified from the rectified aerial
photographs and the plots were physically located in the field using an Omnistar
7000 C-band DGPS. The yield from each of the plots was bagged separately and
weighed. Because our hand-harvesting removed all lint from the stalks, the hand-
harvested yield was reduced by 10% to match an average picking efficiency of the
cotton picker (Valco, 2003).
To evaluate the placement of the plots, plot yields were compared to yield maps

fitted to the pixel distributions of the July 1998 classified images of each field. Yield
of the low, medium and high category plots was compared to the corresponding yield
map ranges and to the average yield within those ranges.

Figure 1. Hand-harvested plots were located by assigning them to what visually appeared to be areas with

the potential for low, medium and high yields on the July 1998 photos of the Sumner and Willis fields (a).

If the July 1998 classified images (b) which had the best visual agreement with the yield maps had been

used, the placement of the plots on the Willis Farm field might have been different. The figure below shows

the plots as placed using only the aerial photos.
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It was evident from Figure 1 that the placement of the hand-harvested plots did
not always coincide well with the low, medium, and high yield areas delineated by
the classified image. In some cases, the plot was located in a transition area (Fig-
ure 1). To evaluate placement when using the classified images rather than the aerial
photographs, we randomly selected a 2.5 m · 2.5 m cell centrally located within an
homogeneous area of predicted low, medium, and high yield for each of the fields.
Using ArcView, the classified image and the corresponding yield map were linked. A
cell was selected randomly on the classified image and a query performed at the
selection point. The query provided the yield from the yield map cell at that location.
The yields of the randomly selected cells were compared to the corresponding yield
map ranges and to the average yield within those ranges.
A paired two-sample student’s t-test was used to determine whether the means of

the plot yields were distinct from the means of the yield map ranges. A paired t-test is
used when there is a natural pairing of observations. The test does not assume that
the variances of both populations are equal.

Results

Many analyses were performed to identify the classification technique that resulted
in the best agreement of the spatial patterns of the aerial photos and those of the
yield monitor-created yield maps. We concluded that the most favorable compari-
sons were obtained using a 3-cluster unsupervised classification that directly resulted
in a high, medium, and low class. The results are reported in Table 1.
For all fields, yield patterns were established early in the season. As the season

progressed, the yield patterns were less evident, primarily because the canopy
closed and masked spatial patterns as the crop matured. The best agreement
between the classified aerial photos and yield maps was obtained with aerial photos
taken between eight and fourteen weeks after planting. The average of the time
since planting during which best agreement was measured for each field was 9.9
weeks.
For each overlay analysis conducted in ArcView, we obtained the percentage of

cells that spatially agreed in each of the three yield categories as well as the
percentage of overall agreement. Available results for the period of four weeks to
fifteen weeks after planting are presented in Table 1. In general, overall agreement
gradually increased in the weeks after planting, maintained an overall agreement
of between 40% and 60% during weeks eight to fourteen, and then gradually
declined again. The average of the best percent agreement measured for each field
was 52%.
The best agreement occurred for the high yield category of field A012 (88%) on 18

July 2000. This field and date also had the best overall agreement (78%). The aerial
photograph, the classified image, the yield map, and the overlay map for this field are
presented in Figure 2. Although the overall agreement was high, the similarity
between the classified image and the yield map is even more striking. The only area
of major disagreement is the very bottom of the pivot circle which had medium yields
but apparently good plant growth. The diagonal red patterns along the center of the
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field on the yield map were caused by the yield monitor continuing to collect data
while the picker was traveling to, and emptying cotton into, the module builder.
Our worst results were for the 1998 Willis field for which the best overall agree-

ment was 50% (08 July 1998 and 07 August 1998) (Figure 3). In contrast, the best

Table 1. Spatial agreement between yield map and classified images for each of the fields studied between

1998 and 2000

Area

Spatial agreement between

yield points and

classified image pixels (%) Average yield

Field Photo date ac ha

Weeks since

Planting High Medium Low All lb/ac kg/ha

Willis 06/23/1998 63 26 7 42 50 41 46 2413 2709

07/08/1998* 9 59 43 38 50

08/07/1998 13 46 55 23 50

Mangum 06/23/1998 42 17 6 66 39 42 53 1887 2119

07/08/1998* 8 65 40 49 54

08/07/1998 13 61 48 50 54

Sumner 07/08/1998* 59 24 10 65 50 54 58 2408 2704

08/07/1998 14 42 47 32 44

Willis 06/05/1999 63 26 4 30 50 40 43 2316 2600

06/19/1999 6 40 43 53 45

07/04/1999* 8 53 46 47 49

08/03/1999 12 80 40 27 66

08/19/1999 14 71 38 29 59

Home 06/19/1999 42 17 7 28 48 37 40 2278 2558

07/04/1999* 9 15 50 37 42

08/05/1999 13 51 51 28 50

08/19/1999 15 41 61 27 52

A001 06/08/2000 57 23 4 17 48 52 47 2479 2783

06/22/2000 6 35 50 31 42

07/05/2000* 8 36 68 22 56

07/18/2000 10 39 50 21 44

A002 06/08/2000 36 14 5 30 45 30 37 2819 3165

06/22/2000 7 29 57 14 45

07/05/2000* 9 65 40 38 55

07/18/2000 11 44 46 39 45

A006 06/08/2000 27 11 5 30 56 27 43 2817 3162

06/22/2000 7 54 55 44 54

07/05/2000* 9 60 42 49 53

07/18/2000 11 63 33 32 52

A010 06/08/2000 20 8 5 21 44 25 32 3167 3555

06/22/2000 7 44 50 9 47

07/05/2000 9 40 49 9 44

07/18/2000* 11 50 52 5 51

A012 06/08/2000 53 21 4 31 39 28 33 2845 3194

06/22/2000 6 37 49 32 42

07/05/2000 8 57 39 41 49

07/18/2000* 10 88 31 36 78

*Denotes the date with the best visual agreement between a classified image and the yield map. This is a

qualitative assessment.
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overall agreement for this field during 1999 was 66%. This field is interesting to study
because of the high degree of variability that it contains—both natural and man-
agement induced (Figure 3). Management induced variability includes incomplete
coverage by the irrigation system, old fence lines, and portions of the field that were
brought into production for the first time during 1998. The northwest section (top
left) had been a pasture for more than a decade while the low, wet area in the eastern
section (middle right) was wooded.
Natural variability includes topography and soil differences. The northeast (top

right) of the field is very sandy but also suffers from crusting problems. The low wet
area also has the lowest elevation in the field and receives substantial amounts of
surface runoff, and potentially, subsurface flow from the adjacent areas of the field.
There are clearly many discrepancies and many striking similarities between the

classified image and the yield map (Figure 3). Very early during the 1998 season, the
cotton plants were growing rapidly in both the old pasture area and the wet area.
The pasture area resulted in high yields while the wet area resulted in rank growth of
the plants and poor yields. Li et al. (2001b) made similar observations on how
landscape variability associated with topographic features affects the spatial pattern
of soil water and N redistribution, and thus N uptake and crop yield. The southern
perimeter produced lower yields because it was not irrigated. The low-yielding
crescent-shape in the top left is an eroded ridge top. The narrow, circular bands in

Figure 2. From top left in clockwise fashion—aerial photo, classified image, yield map, and overlay map

of field A012. The overall agreement was 78% while the agreement for the high yielding areas was 88%.

The visual similarity between the classified image and the yield map is striking. The only area of major

disagreement is the very bottom of the pivot circle which had medium yields but apparently good plant

growth. The diagonal red patterns along the center of the field on the yield map were caused by the yield

monitor continuing to collect data while the picker was emptying cotton into the module builder.
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the center of the field are the tracks of the center pivot irrigation system. Despite the
poor overall agreement (50%), visually, the classified image appears to predict the
final spatial distribution of yield fairly well.
Although the overall agreement numbers (Table 1) were not impressive and the

average best overall agreement was only 52%, the visual similarities between the
classified images and the yield maps were compelling. The best visual agreement
was always found during July. Additional examples are given in Figures 4–7 and

Classified Image
Blue – High
Yellow – Medium
Red – Low

Aerial Photo
08 July 2002

Overlay Map
Yellow –No Agreement
Blue - Agreement

Yield Map
Blue – High
Yellow – Medium
Red – Low

Figure 3. From top left in clockwise fashion—aerial photo, classified image, yield map, and overlay map

of the Willis Farm field (1998). Although this date did not result in the best overlay map and numerical

agreement, it did have the best visual agreement between the classified image and the corresponding yield

map. The only major area of disagreement is in the low, wet area on the eastern edge of the field where

rank growth was observed in the cotton plants.
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by Vellidis (2003b). The Mangum Farm field (Figure 4) contains a severely ero-
ded area (top left) and areas containing deep sands resulting from sediment
deposition (bottom left and right). Poor yields in these areas are exhibited in both
the classified image and the yield map. Blocked sprinklers caused parallel low
yielding streaks in the Sumner Farm field along the right and left boundaries of

Figure 4. July 1998 classified image (8 weeks) and yield map of the Mangum Farm field.

Figure 5. July 1998 classified image (10 weeks) and yield map of the Sumner Farm field.
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the field (Figure 5). The pattern is not exhibited along the entire length of the
perimeter because the pivot occasionally extends beyond the field boundary.
Because 1999 was a much drier year, the low wet area of the Willis Farm field
(Figure 3) yielded well during 1999 (Figure 6) in contrast to 1998. The classified
image and yield map of field A001 (Figure 7) shows good visual agreement in
most areas of the field.
More variability is present in the yield maps than in the classified images which

tend to contain relatively homogeneous areas. The ArcView overlay method used to
quantify the spatial agreement between the image and the yield map was inherently
biased towards expressing the variability of the yield map and resulted in relatively
low agreement rates. There are also areas that deceived the classification algorithms.
In most cases, the biggest discrepancies occurred in areas of the fields that exhibited
good vegetative growth but produced poor yields (Figure 3).
In a few cases, the date with the best visual agreement between the yield map and

the classified image was not the date with the best numerical agreement. In Table 1,
the asterisk denotes the date with the best visual agreement. It should be noted that
best visual agreement is a qualitative assessment which may be biased by conspic-
uously matching spatial features in both the classified image and the yield map. With
one exception, the dates with the best visual agreement occurred between eight and
ten weeks after planting. The best visual agreement for field A010 occurred 11 weeks
after planting.

Figure 6. July 1999 classified image (8 weeks) and yield map of the Willis Farm field.

VELLIDIS ET AL.558



Hand-harvested plots

Table 2 summarizes the results from the hand-harvested plots. Eight of nine cor-
rected average plot yields fell within the appropriate yield ranges of the corre-
sponding yield maps. The only exception being the high yield plot from the Willis
farm. This amount of agreement was somewhat surprising as the plots were located
by assigning them to what visually appeared to be areas with the potential for low,
medium and high yields on the July 1998 photo of the three fields. When the location
of the plots is overlaid onto the corresponding classified images, it is clear that the
plots were not optimally placed (Figure 1).
Comparison of the corrected average plot yields to the average yield of the cor-

responding yield map ranges produced mixed results. The yield map averages of the
low ranges at the Sumner and Mangum farms were much lower than the yields of the
plots. Consequently, use of the plots to predict yields would have resulted in sig-
nificant overestimation. In contrast, the relative error for the other seven compari-
sons were generally good and in three instances was within 10% (Table 2). Results of
Student’s t-test showed that the mean of plot yields was not significantly different

Figure 7. July 2000 classified image (8 weeks) and yield map of field A001.
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from the mean of yield map ranges at Sumner and Mangum Farms. At the Willis
Farm, however, mean yields were significantly different at the P ¼ 0.15 level
(Table 2).

Plots randomly selected from classified images

The comparison between the yields of the cells randomly selected from the classified
images and corresponding yield map parameters resulted in 100% of cell yields being
within the corresponding yield map ranges (Table 3). Of the 30 possible comparisons
(3 cells · 10 fields), 25 were available because in some images a homogeneous area
representative of given yield category was not available. For example, in fields A001
(Figure 7), A002, A010, and A012 (Figure 2), areas classified as low yielding were
found only at the edges of the field or alongside roadways or waterways.
Comparison of the cell yield to the average range yield was also good, particularly

in the medium and high categories. The average absolute relative error between cell
yield and average range yield was 43%, 11%, and 8%, for the predicted low, medium,
and high categories, respectively. Results of student’s t-test showed that the mean of
cell yields was not significantly different from the mean of yield map ranges in the
low, medium, or high yield categories (Table 3). Consequently, it appears feasible to
use small hand harvested plots for assigning yields to a classified image and thus
replace a conventional yield map. It is prudent, however, to use the classified image
to locate the plots rather than the raw aerial photograph.

Discussion and conclusions

This method offers potential for offering cotton farmers early-season maps that
predict the spatial distribution of yield. Although these maps can not provide
magnitudes, they clearly show the resulting yield patterns. With inherent knowledge
of past performance, farmers can use this information to allocate resources, address
crop growth problems, and, perhaps, improve the profitability of their farm oper-
ation.
Assigning magnitudes to the high, medium, and low yield categories is desirable,

and perhaps could be accomplished with crop growth models in the early season. In
the absences of a conventional yield map, projected yield values could also be
assigned at the end of the season from representative hand sampling in delineated
areas prior to mechanical harvesting provided these plots are properly located. Using
a classified image in conjunction with the original image is probably the best way to
locate plots.
On average, the best agreement between classified images and yield maps occurred

9.9 weeks after planting because yield patterns were established early in the season.
As the season progressed, the yield patterns were less evident, primarily because the
canopy closed and masked spatial patterns.
The best agreement was obtained with a 3-class unsupervised classification which

separated the image into areas with high, medium, and low yield potential. Although
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the overall agreement numbers were not impressive and the average best overall
agreement was only 52%, the visual similarities between the July classified images
and the yield maps were striking.
There is real potential for developing predictive yield maps from low-level aerial

photographs. Because it appears that yield patterns are established early in the
season, yield projections can be made as early as 10 weeks into the crop season. This
technology is inexpensive and fairly straightforward, and ideally suited as a service to
be offered to farmers by a crop consultant or a cooperative. The slide film and slide
scanner used in the study can now be replaced by high resolution digital camera
which would eliminate the cost of processing film and scanning images. The high-end
image analysis package used during the project was necessary for evaluating the
techniques presented here and is not necessary for conducting unsupervised classi-
fications of digital images. Images can be classified using readily available desktop
photo-editing software such as Paint Shop Pro�, Microsoft Photo Editor�, or other
similar packages. Images that will be used only for classification need not be rectified.
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